1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Diseño Mecánico

Carrera: Ingeniería electromecánica

Clave de la asignatura: EMM - 0513

Horas teoría-horas práctica-créditos 3 – 2 – 8

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Ocotlán del 23 al 27 agosto 2004.	Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electromecánica
Instituto Tecnológico de Apizaco y Tlalnepantla	Academias de Ingeniería Electromecánica	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Acapulco del 14 al 18 febrero 2005	Comité de Consolidación de la carrera de Ingeniería Electromecánica.	Definición de los programas de estudio de la carrera de Ingeniería Electromecánica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores			Poste	riores		
Asignaturas	Temas		Asigna	turas	Temas	3
Dibujo	Dibujos	de	Diseño	е	Diseño	de
Electromecánico	ingeniería.		ingeniería	asistido		de
			por compu	tadora.	maquina me	ediante
Mecánica de	Esfuerzos				herramienta	s
materiales	combinados.				computacion	nales.
	Esfuerzos	en				
	elementos					
	especiales.					
A /!: ' / / :	_					
Análisis y síntesis	Engranes.					
de mecanismos.						

- b). Aportación de la asignatura al perfil del egresado
 - Diseñar, analizar, seleccionar e innovar sistemas electromecánicos.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

• Analizará y diseñará diferentes elementos mecánicos utilizados en la construcción de maquinaria, equipo y sistemas electromecánicos.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Concentración de esfuerzos.	1.1	Concentración de esfuerzos bajo carga estática.
			1.1.1 Conceptos y generalidades de esfuerzos.
			1.1.2 Concentración de esfuerzos
			1.1.3 Analogía del flujo de esfuerzos.
			1.1.4 Graficas de concentración de esfuerzos.
		1.2	Predicción de fallas por esfuerzos.
			1.2.1 Esfuerzo en cargas uniaxiales.
			1.2.2 Esfuerzo con cargas
			multiaxiales.
2	Resistencia a la fatiga.	2.1	Conceptos y generalidades.
		2.2	Diagrama esfuerzo-numero de ciclos.
		2.3	Factores que modifican el límite de resistencia a la fatiga.
		2.4	Esfuerzos combinados fluctuantes.

			2.4.1 Criterio de Sodeerberg,		
			2.4.2 Criterio de Goodman.		
			2.4.3 Criterio de Kimmelman		
		2.5			
	Diagram de sias	2.5	<u> </u>		
3	Diseño de ejes.	3.1			
			Procedimiento para el diseño de un eje		
		3.3	, ,		
			3.3.1 Teoría de la energía de		
			distorsión		
			3.3.2 Teoría del esfuerzo cortante		
			máximo		
		3.4	Diseño bajo carga cíclica		
			3.4.1 Código ASME		
			3.4.2 Teoría de la energía de		
			distorsión		
			3.4.3 Teoría del esfuerzo cortante		
			máximo		
			3.4.4 Teoría del esfuerzo normal		
			máximo		
			3.4.5 Ecuación del diámetro del eje		
			para el criterio ED-Elíptico		
			3.4.6 Ecuación del diámetro del eje		
			para el criterio ED-Gerber		
		3.5	•		
			3.5.1 Introducción		
			3.5.2 Sistema de masa múltiple		
4	Engranes rectos	4.1	Clases de engranes y características		
			geométricas principales		
		4.2	Diseño de engranes rectos.		
			4.2.1 Fuerzas en los engranes		
			4.2.2 Resistencia de los dientes		
			4.2.3 Esfuerzos permisibles en los		
			dientes		
			4.2.4 Cargas dinámicas en los dientes		
			4.2.5 Tamaño y espesor del diente		
		4.3	Material para el engrane		
5	Rodamientos	5.1	Tipos de rodamientos y aplicaciones		
	130dainieillos	J. 1	5.1.1 Clasificación y partes de un		
			rodamiento		
			5.1.2 Series y claves de rodamientos5.1.3 Coeficiente de rozamiento		
		F 2			
		5.2	Selección de rodamientos		
			5.2.1 Vida de clasificación		
			5.2.2 Capacidad dinámica		
			5.2.3 Efecto de la carga axial		
			5.2.4 Proyecto para carga variable		

		5.3	Análisis del montaje y tipo de lubricación a emplear.
6	Transmisiones flexibles	6.1	Clasificación y aplicación de la
			transmisión con bandas
		6.2	Bandas planas y bandas "V"
			6.2.1 Nomenclatura y material de
			fabricación
			6.2.2 Potencia transmitida
			6.2.3 Diseño de la transmisión con banda
			6.2.4 Longitud de la banda, distancia
			entre centros y ángulo de
			contacto
			6.2.5 Selección, montaje y mantenimiento
		6.3	Clasificación y aplicación de la
		l	transmisión con cadenas
		6.4	Operación de cadenas de rodillos
			6.4.1 Longitud de la cadena
			6.4.2 Potencia nominal6.4.3 Selección del tamaño de la
			rueda catarina y de la distancia
			central
			6.4.4 Selección, montaje y mantenimiento
		6.5	
		6.6	Fallas en las cadenas de rodillos
7	Diseño de tornillos	7.1	Clasificación y designación de roscas
	sujetadores y de potencia.	7.2	Tornillos de potencia
			7.2.1 Fuerzas y par de torsión
			7.2.2 Potencia y eficiencia
		7.0	7.2.3 Tornillos de autobloqueo
		7.3	Sujetadores roscados
			7.3.1 Tipos de sujetadores
			7.3.2 Carga de pernos y tuercas 7.3.3 Parámetros de rigidez y
			resistencia
			7.3.4 Perno precargado bajo carga
			estática
			7.3.5 Perno precargado bajo carga
			dinámica
		7.1	• •
8	Diseño de soldaduras.	8.1	Tipos de soldaduras, simbología y
			aplicaciones.
		8.2	Juntas soldadas bajo carga estática
			8.2.1 Carga paralela y transversal

8.2.3 Flexión 8.3 Juntas soldadas bajo carga dinámica 8.3.1 Resistencia de la soldadura 8.3.2 Resistencia a la fatiga.
--

6.- APRENDIZAJES REQUERIDOS

- Dibujos de ingeniería.
- Esfuerzos combinados.
- Esfuerzos en elementos especiales .(columnas, vigas curvas y cilindros)
- Mecanismos articulados.
- Levas.
- Engranes.
- Propiedad de los materiales.

7.- SUGERENCIAS DIDÁCTICAS

- Uso de software para la solución de problemas.
- Resolver problemas en clase y extraclase.
- Investigar en manuales, catálogos de fabricantes, diversas fuentes de información, los procedimientos para seleccionar elementos mecánicos.
- Visitar empresas donde se vea la aplicación del diseño mecánico.
- Investigación documental sobre la metodología del diseño y factores de diseño.

8.- SUGERENCIAS DE EVALUACIÓN

- Examen diagnostico
- Reportes, trabajos, investigaciones, visitas industriales y prácticas.
- Participación
- Habilidad en el manejo de software
- Desempeño en forma individual y grupal.

9.- UNIDADES DE APRENDIZAJE

Unidad 1.- Concentración de esfuerzos.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El estudiante resolverá problemas donde intervenga la concentración de esfuerzos debido a cargas estáticas y aplicara las distintas teorías lineales de fallas para determinar si el elemento fallará o no.	 Investigar, elaborar un diagrama y exponerlo para formar criterios relacionados a la concentración de esfuerzos y también de cómo se manifiestan las fluctuaciones de un esfuerzo. Resolver problemas relacionados con la concentración de esfuerzos utilizando formulas y gráficos. Resolver problemas relacionados a la preedición de fallas en cargas uniaxiales y multiaxiales mediante teorías de fallas lineales. 	1,2,3 4,10 11 y 12

Unidad 2.- Resistencia a la fatiga.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará los conceptos básicos de resistencia a la fatiga en la solución de problemas de fallas por cargas fluctuantes mediante las teorías no lineales de Goodman, Kimmelman, etc.	 Revisar fuentes de información, hacer un resumen y exponer los conceptos básicos y las generalidades que dan como consecuencia la resistencia a la fatiga de los materiales. Dibujar un diagrama esfuerzo- número de ciclos e identificar las características de la curva y el límite de la resistencia a la fatiga y redactar las conclusiones. Explicar la importancia que tienen cada uno de los factores que modifican el límite de resistencia a la fatiga y como afecta cada uno de estos en los materiales. Resolver problemas de resistencia a la fatiga cuando el material se encuentra sometido a cargas fluctuantes, utilizando las teorías no lineales de Goodman, Kimmelman, Sines, Sodderberg. Analizar, explicar y seleccionar el factor de seguridad mas adecuado para 	

materiales que estén sometidos a fatiga, utilizando distintos criterios.	

Unidad 3.- Diseño de ejes

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará los principios básicos para el diseño de ejes sujetos a cargas estáticas y cíclicas, así como la determinación de la primera velocidad crítica de un eje.	 Investigar y explicar la importancia y aplicaciones del diseño de ejes, así como los procedimientos y análisis que esto involucra. Investigar, elaborar un resumen y explicar el procedimiento general para el diseño de un eje. Dibujar un eje donde se puedan observar las cargas y esfuerzos a los que se encuentra sujeto y los diagramas de par torsional – momento horizontal – momento vertical. Resolver problemas de diseño de ejes sujetos a carga estática, tanto de momento flexionante – torsión, como de momento flexionante – torsión – carga axial, aplicando la teoría de la energía de distorsión y del esfuerzo cortante máximo. Resolver problemas de diseño de ejes sujetos a carga cíclica, tanto de momento flexionante alternante – torsión continua, como de momento flexionante alternante – torsión continua, como de momento flexionante alternante alternante – torsión alternante, aplicando las teorías de: (para materiales dúctiles) Código ASME Energía de distorsión Esfuerzo cortante máximo Criterio ED – Elíptico Criterio ED – Gerber (para materiales frágiles) Esfuerzo normal máximo Explicar la importancia del cálculo de la primera velocidad crítica de un eje, sus causas, análisis, medición, prevención y efectos en el diseño y funcionamiento del eje. 	1,2,3 4,5,6 10,11 y 12

•	Determinar la primera velocidad crítica de un eje aplicando el método del	
	sistema de masa múltiple o la ecuación de Rayleigh.	

Unidad 4.- Engranes rectos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizara y diseñara engranes rectos para la transmisión de potencia, con el mayor numero de dientes y basados en las ecuaciones del AGMA.	 Elaborar un resumen de las diferentes clases de engranes, nomenclatura, sus partes principales y las relaciones de velocidad en los engranes. Dibujar un par de engranes rectos, elaborar los diagramas de cuerpo libre, aplicar las leyes de la estática para determinar las fuerzas que actúan en los engranes y aplicando la teoría de la mecánica de materiales determinar los esfuerzos en el diente. Calcular las cargas dinámicas y desgaste en los dientes, aplicando las formulas correspondientes. Calcular el tamaño y espesor del diente, así como el material para el engrane. 	2,3,6 10,11 12 y 13

Unidad 5.- Rodamientos

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará y seleccionará el tipo de rodamiento para una vida útil necesaria.	 Investigar y exponer los diferentes tipos de rodamientos, clasificación, aplicaciones, de los ya existentes en el mercado y selección en base a su uso. Calcular el coeficiente de rozamiento y vida media en revoluciones y horas de funcionamiento. Calcular los efectos de la carga radial y axial, así como de carga variable Analizar el montaje e identificar el tipo de lubricación para un rodamiento. Mediante un ejemplo seleccionar el mejor tipo de rodamiento, haciendo uso 	2,3,7 10,11 y 12

adecuado de catálogos y manuales de	
fabricantes.	

Unidad 6.- Transmisiones flexibles.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Aplicará y seleccionará el mejor sistema de transmisión flexible.	 Investigar y exponer los diferentes tipos de transmisiones flexibles, clasificación, aplicaciones, de los ya existentes en el mercado y selección. Resolver problemas de selección de bandas "V". Analizar el montaje de las bandas, así como su mantenimiento. Resolver problemas de selección de cadenas de rodillos, así como de diente invertido. Analizar el montaje de las cadenas, así 	1,2,4 8,9,10 11 y 12
	 como su mantenimiento y lubricación. Explicar las principales causas de falla en la transmisión con cadenas de rodillos. 	

Unidad 7.- Diseño de tornillos sujetadores y de potencia

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará y diseñará tornillos sujetadores y	 Explicar la clasificación y designación de roscas estándar. 	1,2,3 10,11
de potencia sometidos a diferentes condiciones de carga.	 Calcular el par de torsión, potencia, eficiencia en tornillos de potencia y autobloqueo. Calcular la carga, resistencia y parámetros de rigidez en pernos bajo carga estática y dinámica. Resolver problemas de diseño de juntas de 	y 12
	empaquetadura.	

Unidad 8.- Diseño de soldaduras

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
Analizará y diseñará uniones soldadas sometidas a diferentes condiciones de carga estáticas y dinámicas.		10,11 y 12

10. FUENTES DE INFORMACIÓN

- 1. Bernard J. Hamrock, Bo Jacobson, Steven r. Schmid. *Elementos de maquinas*. Editorial Mc Graw Hill.
- 2. Shigley Joseph E., Charles R. Mischke. *Diseño en ingeniería mecánica*. Editorial Mc Graw Hill.
- 3. Spotts M. F., T. E. Shoup. *Elementos de maguinas*. Editorial Mc Graw Hill.
- 4. Deutschman Aaron d., Walter J. Michels, Charles E. Wilson. *Diseño de maquinas, teoría y practica*. Editorial CECSA.
- 5. S. Hall, A. R. Holowenco, H. G. Laughlin. *Diseño de maquinas*. Editorial Mc Graw Hill Serie schaum.
- 6. FAIRES VIRGIL MORING. Diseño de elementos de maquinas. Editorial UTEHA.
- 7. Catalogo general de rodamientos SKF.
- 8. Manual de seleccion para bandas DODGE.
- 9. Manual de selección para bandas "v" y servicio pesado. GATES No. 14955 A, 8/99.
- 10. Juvinall, R.C. Fundamentals of machine component design. New York, Editorial John Wiley and Sons. 1991, 2° edition.
- 11. Norton, R.L. Machine design. New jersey, Editorial Prentice Hall. 1998.
- 12. Black, P.H. and O.E. Adams. *Machine design*. Auckland: Editorial Mc Graw Hill International. 1968.
- 13. Catalogo de engranes.

11. PRÁCTICAS PROPUESTAS.

- 1. Realizar visitas industriales con la finalidad de detectar necesidades de diseño mecánico.
- 2. Verificar experimentalmente las características que proporciona el fabricante de: engranes, rodamientos, bandas, cadenas, etc.
- 3. Utilizar el método de fotoelasticidad, para determinar distribución de esfuerzos.